10,700 research outputs found

    Schwinger-Dyson equations and disorder

    Full text link
    Using simple models in D=0+0 and D=0+1 dimensions we construct partition functions and compute two-point correlations. The exact result is compared with saddle-point approximation and solutions of Schwinger-Dyson equations. When integrals are dominated by more than one saddle-point we find Schwinger-Dyson equations do not reproduce the correct results unless the action is first transformed into dual variables.Comment: 7 pages, 6 figure

    Enhancing the Performance of Integrated Optical Sensor by Slow-light: Theoretical Study on Ring-Resonator Based Structures

    Get PDF
    In this work, the performance of three kinds of integrated optical ring-resonator based slow-light structures for sensing applications is theoretically studied using the transfer matrix method and the complex transmission coefficient approach. Enhancement of sensing performance due to the slowlight phenomenon is quantitatively formulated. The modeling results show that using realistic structure parameters, a refractive index detection limit of one order better than the state of the art Mach-Zehnder interferometer sensing structure is possible by the inclusion of such a slow-light structure. The role of ring(s) attenuation constant in limiting the usable light slowness and the achievable sensor resolution is also discussed. For a sufficiently small ring attenuation constant, the optimal sensing performance of a single resonator circuit can be better than that of multiple resonator circuits, while offering less fabrication complexities, cleaner spectra, shorter device length, and higher figure of merit

    Practical Bayesian Optimization of Machine Learning Algorithms

    Full text link
    Machine learning algorithms frequently require careful tuning of model hyperparameters, regularization terms, and optimization parameters. Unfortunately, this tuning is often a "black art" that requires expert experience, unwritten rules of thumb, or sometimes brute-force search. Much more appealing is the idea of developing automatic approaches which can optimize the performance of a given learning algorithm to the task at hand. In this work, we consider the automatic tuning problem within the framework of Bayesian optimization, in which a learning algorithm's generalization performance is modeled as a sample from a Gaussian process (GP). The tractable posterior distribution induced by the GP leads to efficient use of the information gathered by previous experiments, enabling optimal choices about what parameters to try next. Here we show how the effects of the Gaussian process prior and the associated inference procedure can have a large impact on the success or failure of Bayesian optimization. We show that thoughtful choices can lead to results that exceed expert-level performance in tuning machine learning algorithms. We also describe new algorithms that take into account the variable cost (duration) of learning experiments and that can leverage the presence of multiple cores for parallel experimentation. We show that these proposed algorithms improve on previous automatic procedures and can reach or surpass human expert-level optimization on a diverse set of contemporary algorithms including latent Dirichlet allocation, structured SVMs and convolutional neural networks

    Training Restricted Boltzmann Machines on Word Observations

    Get PDF
    The restricted Boltzmann machine (RBM) is a flexible tool for modeling complex data, however there have been significant computational difficulties in using RBMs to model high-dimensional multinomial observations. In natural language processing applications, words are naturally modeled by K-ary discrete distributions, where K is determined by the vocabulary size and can easily be in the hundreds of thousands. The conventional approach to training RBMs on word observations is limited because it requires sampling the states of K-way softmax visible units during block Gibbs updates, an operation that takes time linear in K. In this work, we address this issue by employing a more general class of Markov chain Monte Carlo operators on the visible units, yielding updates with computational complexity independent of K. We demonstrate the success of our approach by training RBMs on hundreds of millions of word n-grams using larger vocabularies than previously feasible and using the learned features to improve performance on chunking and sentiment classification tasks, achieving state-of-the-art results on the latter

    Towards Complexity for Quantum Field Theory States

    Full text link
    We investigate notions of complexity of states in continuous quantum-many body systems. We focus on Gaussian states which include ground states of free quantum field theories and their approximations encountered in the context of the continuous version of Multiscale Entanglement Renormalization Ansatz. Our proposal for quantifying state complexity is based on the Fubini-Study metric. It leads to counting the number of applications of each gate (infinitesimal generator) in the transformation, subject to a state-dependent metric. We minimize the defined complexity with respect to momentum preserving quadratic generators which form su(1,1)\mathfrak{su}(1,1) algebras. On the manifold of Gaussian states generated by these operations the Fubini-Study metric factorizes into hyperbolic planes with minimal complexity circuits reducing to known geodesics. Despite working with quantum field theories far outside the regime where Einstein gravity duals exist, we find striking similarities between our results and holographic complexity proposals.Comment: 6+7 pages, 6 appendices, 2 figures; v2: references added; acknowledgments expanded; appendix F added, reviewing similarities and differences with hep-th/1707.08570; v3: version published in PR

    CP4 miracle: shaping Yukawa sector with CP symmetry of order four

    Full text link
    We explore the phenomenology of a unique three-Higgs-doublet model based on the single CP symmetry of order 4 (CP4) without any accidental symmetries. The CP4 symmetry is imposed on the scalar potential and Yukawa interactions, strongly shaping both sectors of the model and leading to a very characteristic phenomenology. The scalar sector is analyzed in detail, and in the Yukawa sector we list all possible CP4-symmetric structures which do not run into immediate conflict with experiment, namely, do not lead to massless or mass-degenerate quarks nor to insufficient mixing or CP-violation in the CKM matrix. We show that the parameter space of the model, although very constrained by CP4, is large enough to comply with the electroweak precision data and the LHC results for the 125 GeV Higgs boson phenomenology, as well as to perfectly reproduce all fermion masses, mixing, and CP violation. Despite the presence of flavor changing neutral currents mediated by heavy Higgs scalars, we find through a parameter space scan many points which accurately reproduce the kaon CP-violating parameter ϔK\epsilon_K as well as oscillation parameters in K and B(s)B_{(s)} mesons. Thus, CP4 offers a novel minimalistic framework for building models with very few assumptions, sufficient predictive power, and rich phenomenology yet to be explored.Comment: 39 pages, 8 figures, 1 table; v2: expanded discussion, extra references, matches published versio

    Ultra-sharp soliton switching in a directional coupler

    Get PDF
    By a numerical investigation it is shown that a directional coupler, described by two linearly coupled non-linear Schrošdinger equations, can be used to construct a soliton switch with an extremely narrow transition region
    • 

    corecore